Desloughing algorithm

Holistic patient assessment
- Do a holistic assessment to establish the cause of the wound and slough
- Address any contributing pathophysiology — for example, offload pressure, improve perfusion, optimise comorbidities and manage infection

Wound assessment
- Establish a baseline from which to measure success
- Document the wound surface area, depth and percentages of tissue types
- Assess the colour and consistency of exudate
- Note any signs and symptoms of increasing bioburden/infection

Goal setting
- Define the expected outcome of treatment
- Choose an intervention (see treatment pathway, right)
- Set a realistic timeframe
- Agree goals/outcomes with the patient

Reassess and evaluate whether the goal has been met

Yes

- Reassess the pre-existing condition, patient-related factors and wound bed to establish the reason for failure and if the initial diagnosis was correct
- Consider an alternative method of desloughing
- Consider referral to a specialist service for advice

No

- Define new goal of treatment and timeframe

Slough characteristics

<table>
<thead>
<tr>
<th>Slough associated with biofilm/bioburden</th>
<th>Wet superficial slough</th>
<th>Thick slough</th>
<th>Dry adherent slough</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surfactant cleansing e.g. Prontosan or Octenil</td>
<td>Surfactant cleansing e.g. Prontosan or Octenil</td>
<td>Autolytic/mechanical desloughing matched to the exudate levels</td>
<td></td>
</tr>
<tr>
<td>Mechanical desloughing/larvae</td>
<td></td>
<td></td>
<td>Autolytic desloughing</td>
</tr>
<tr>
<td>Antimicrobials matched to the exudate levels</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recommended products

- Surfactant cleansing e.g. Prontosan or Octenil
- Mechanical desloughing/larvae
- Antimicrobials matched to the exudate levels

Treatment pathway

References

Sloughing algorithm

1. Establish a baseline from which to measure success.
2. Document the wound surface area, depth and percentages of tissue types.
3. Assess the colour and consistency of exudate.
4. Note any signs and symptoms of increasing bioburden/infection.
5. Define the expected outcome of treatment.
6. Choose an intervention (see treatment pathway, right).
7. Set a realistic timeframe.
8. Agree goals/outcomes with the patient.
9. Reassess and evaluate whether the goal has been met.

Desloughing

- Surfactant cleansing e.g. Prontosan or Octenil
- Mechanical desloughing/larvae
- Autolytic/mechanical desloughing matched to the exudate levels.

Product information

UrgoClean

Safe and effective desloughing from UrgoClean

Jeanette Milne

Tissue Viability Nurse Specialist, South Tyneside NHS Foundation Trust

Safe and effective desloughing from UrgoClean

© MA Healthcare 2015 • 020 7561 6376 • www.markallengroup.com Published on behalf of Urgo Medical
What is slough?

Slough is a consequence of the inflammatory phase of wound healing. It comprises dead white blood cells, fibrin, cellular debris and liquefied devitalised tissue.

In acute wounds, neutrophils remove dead and devitalised tissue and ingest debris and bacteria. After this, the activity of neutrophils changes and the redundant cells undergo programmed cell death (apoptosis). This cellular debris is forced out onto the wound surface, where it can be seen as slough. This natural process causes minimal tissue damage. The wound then proceeds to the next stage of healing (proliferation).

Chronic wounds, in contrast, get stuck in the inflammatory phase of healing. Increased inflammation is associated with the continual breakdown of debris and remodelling of tissue. Matrix metalloproteinase (MMP) levels increase, resulting in degradation of the proteins and growth factors that promote healing. The number of white cells also rises. Cell death increases, resulting in the greater production of slough.

Slough is a source of nutrients for bacteria, providing an environment for bacterial proliferation. It is also linked with wound chronicity, resulting in increased inflammation, which prolongs the inflammatory phase and impairs healing (Figure 1).

Figure 1. The cycle of slough formation

Characteristics

Slough should not be confused with necrotic tissue, which is caused by a loss of blood supply (Table 1). Like slough, necrotic tissue is a food source for bacteria, so must be removed (debrided). Methods of debriding devitalised tissue are: surgical (such as ultrasound, sharp, enzymatic, mechanical, autolytic and larvae).

Table 1. Differences between slough and necrosis

<table>
<thead>
<tr>
<th>Sloughy tissue</th>
<th>Necrotic tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause(s)</td>
<td>Consequence of the wound-healing process</td>
</tr>
<tr>
<td>Pathology</td>
<td>Cellular debris caused by programmed cell death (apoptosis)</td>
</tr>
<tr>
<td>Made up of</td>
<td>Redundant white blood cells, fibroblasts and other cellular components of healing</td>
</tr>
<tr>
<td>Colour</td>
<td>Yellow or creamy yellow, white, grey/black</td>
</tr>
<tr>
<td>Description</td>
<td>Adherent, viscous, slimy and stringy</td>
</tr>
</tbody>
</table>

The clinical appearance of slough in a wound can vary:

- Slough is likely to be patchy in acute wounds, but will be more fibrous and cover a greater surface area in chronic wounds.
- Due to its slimy, soft, viscous texture, slough is difficult to separate from healthy tissue. Therefore, sharp debridement is impossible.
- It can be either loosely attached or firmly adherent to the wound bed, hence the need to deslough.
- It can be grey/black if it is heavily colonised with anaerobic bacteria, but will still be slimy and stringy (Grother, 2015).

Desloughing

A comprehensive assessment must be undertaken before determining whether to deslough or debride the wound. Desloughing involves two options:

- **Natural desloughing (autolysis)** – where the body’s own enzymes slowly rid the wound of debris. In a moist environment, phagocytic cells and MMPs can soften and liquefy the sloughy tissue, which is digested by macrophages (Ayello et al., 2004)
- **Assisted desloughing** – this is carried out when the natural process of autolysis cannot cope with the amount of slough present. It involves the use of dressings and other wound-care technologies. It can be further defined as either mechanical or autolytic.

To facilitate autolytic desloughing, a moist wound environment must be created. This is usually achieved with dressings that either donate fluid to the wound (such as occlusive dressings or hydrogels), or absorb excess exudate (such as foams, calcium alginites and Hydrofibres).

Mechanical desloughing is a relatively new method that facilitates the removal of slough. Examples are UrgoClean (Urgo Medical) (Figure 2) and monofilament debridement pads (National Institute for Health and Care Excellence (NICE), 2014).

Desloughing requires some exudate to be effective. It is not recommended for clinically infected wounds, those with a high potential for anaerobic infection or if there is ischaemia in the limb or digits (Ayello et al., 2004).

A desloughing algorithm and a treatment pathway are described overleaf.

Figure 2. Mechanical desloughing with UrgoClean